Scheme II

OV-225 on $80-100$ mesh Chromosorb G-HP column at $100^{\circ} \mathrm{C}$. The concentration was usually between 0.07 and 0.12 M .

1,4-Diisocyanatocubane. A heavy shield must be used. Solutions of cubane-1,4-bis(acyl azide) have not caused problems, but the crystalline compound detonates if touched. Great care should be exercised. A mixture of 1,4 -dicarboxycubane (2.30 g , 12.0 mmol) and 25 g of thionyl chloride (freshly distilled from triphenyl phosphite) was stirred at reflux under nitrogen for 3 h. Most of the excess thionyl chloride was recovered by distillation. ${ }^{12}$ Approximately 15 mL of carbon tetrachloride (dried over 4A molecular sieves) was added and distilled; this operation was repeated. Azidotrimethylsilane (Aldrich, $6.50 \mathrm{~mL}, 49.0 \mathrm{mmol}$) was added, and the mixture was stirred at room temperature under nitrogen for 2 h (no longer!). ${ }^{13}$ (The disappearance of the diacid chloride resonance at $\delta 4.45$ and the appearance of the diacylazide peak at $\delta 4.27 \mathrm{ppm}$ were followed by ${ }^{1} \mathrm{H}$ NMR analysis of diluted aliquots.) Approximately 80 mL of ethanol-free chloroform was added, and half of it was slowly distilled. Another 40 mL of the ethanol-free chloroform was added, and again half of the solution was distilled. The solvent and excess azidosilane were removed in vacuo. The residual yellow solid was sublimed (oil bath at $70-110^{\circ} \mathrm{C} / 0.3$ Torr) to give $1.74 \mathrm{~g}(78 \%)$ of snow-white 1,4 -diisocyanatocubane: mp $113-115{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.98$ (s, 6 H); ${ }^{13} \mathrm{C}$ NMR $\delta 124.1,66.8,49.7$; $\mathrm{IR}\left(\mathrm{CCl}_{4}\right) \nu 3005,2256,1258,1093 \mathrm{~cm}^{-1}$. The material is sensitive to moisture but can be stored cold under nitrogen without deterioration for at least 1 month.

1,4-Dinitrocubane. 1,4-Disocyanatocubane ($1.30 \mathrm{~g}, 7.0 \mathrm{mmol}$) was added with stirring to a mixture of 1 L of 0.072 M dimethyldioxirane (72 mmol) in acetone and 175 mL of distilled water. The solution was stirred at room temperature in the dark under nitrogen for 1.5 h . (The progress of the reaction was followed by GC: ${ }^{1 / 4} \mathrm{in}$. $\times 6$ ft glass column with $2 \% \mathrm{OV}-225$ on 80-100 mesh Chromosorb G-HP column; $23 \mathrm{~mL} /$ min flow; start at $140^{\circ} \mathrm{C}$, then $20^{\circ} \mathrm{C} / \mathrm{min}$ to $230^{\circ} \mathrm{C}$; retention times: diisocyanate, 2.4 min ; dinitrocubane, 6.0 min .) The acetone was removed in vacuo (bath temperature $27^{\circ} \mathrm{C}$), leaving a white solid and some water. The solid was collected and crystallized from benzene (two crops) to give $1.15 \mathrm{~g}(85 \%)$ of snow-white 1,4 -dinitrocubane: mp $260{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $\delta 4.67$ (s); ${ }^{13} \mathrm{C}$ NMR $\delta 86.3$, 49.8; IR (KBr) $\nu 1510,1372,1358,1194,950,811 \mathrm{~cm}^{-1}$; MS (CI, isobutane), m / e (relative intensity) 195 (17), 118 (84), 102 (100), 90 (84).

Acknowledgment. This work was supported by the U.S. Army Research, Development and Engineering Center (via Geo-Centers, Inc.) and the Office of Naval Research. The National Science Foundation and the National Institutes of Health, the latter through The University of Chicago Cancer Research Center (CA 14599), contributed substantially to the departmental instrument facility. The principal investigator thanks the Alexander von Humboldt Foundation for a U.S. Senior Scientist Award during whose tenure this paper was drafted at Universität Köln, FRG, a very gracious host institution.

[^0]
Synthetic Approaches toward Mitomycins:
 Construction of \boldsymbol{p}-Quinone Moiety on 1-Benzazocine Derivative

Kiyoshi Yoshida,* Shigekazu Nakajima, Takeshi Ohnuma, ${ }^{\dagger}$ Yoshio Ban,* and Masakatsu Shibasaki
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

Keiichi Aoe and Tadamasa Date
Analytical Center, Tanabe Seiyaku, Co., Ltd., Toda, Saitama 335, Japan

Received April 28, 1988

Mitomycins ${ }^{1}$ are an important class of antitumor antibiotics among which mitomycin C (MMC) ${ }^{2}$ has been used in the treatment of various neoplastic diseases. ${ }^{3}$ Although numerous synthetic studies ${ }^{4}$ toward MMC have been carried out since its structural elucidation, ${ }^{5}$ only Kishi ${ }^{6}$ and Fukuyama ${ }^{7}$ have achieved total syntheses of natural mitomycins.
In the course of our synthetic work related to MMC, a new reaction named criss-cross annulation was discovered ${ }^{8}$ and applied to the synthesis of various natural products. ${ }^{9}$ The reaction could be controlled to give benzazocine derivatives $(2,3)$, which are key intermediates for our synthetic plan shown in Scheme I. In the present paper, we disclose the X-ray crystallographic analysis of the conformational isomers of $8 \mathbf{A}$ and $8 \mathbf{B}$ and an efficient synthesis of proposed MMC intermediate 12 by taking advantage of the reactivity difference of the conformers.

Hydrogenolysis of 2^{10} afforded primary amine 4 in 96% yield, which was oxidized with $\mathrm{Pb}(\mathrm{OAc})_{4}(2.2 \mathrm{~mol}$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give o-quinone imide 5. Hydrolysis of crude 5, followed by hydrogenation gave catechol 7 in 48% overall yield. Direct ketalization ${ }^{11}$ of 7 gave 8 A in up to 50% yield together with a significant amount of a byproduct. In an alternative preparation of 8 , catechol 7 was first converted to the corresponding benzyl ether. Under these conditions, the products were obtained as a $1: 1$ mixture of conformational isomers. Ketalization of this mixture under the same conditions as described above afforded smoothly the desired ketal 9 in 86% yield from 7 as a mixture of the conformers 9A and 9B (Scheme II). Since isomer 9A slowly isomerized to 9B even at room temperature, the ratio of 9 A and 9 B was different in every experiment (9A:9B $=1: 3 \sim 1: 10$). Debenzylation of this mixture provided $8 A$ and $8 B$ in the same ratio as 9 in 85% yield. The conformational isomers ($8 \mathbf{A}$ and $8 B$) were easily separated by column chromatography.
In a previous paper, ${ }^{12}$ the isolation of the conformational isomers of $3(3 A, B)$ was reported. Spectral data of $8 A$ and $8 B$ are parallel with those of $3 A$ and $3 B$, respectively. Single X-ray crystallographic analysis ${ }^{13}$ of $8 \mathbf{A}$ and $8 \mathbf{B}$ (Figure 1) showed that the conformation of both isomers is a twist-boat-chair form, in which the only difference between the structures is the stereochemistry of C-6 methyl group, which is pseudoequatorial in 8 A and pseudoaxial in 8 B . Isomerization of 8 B in benzene at reflux temperature for 42 h provided the thermodynamically more stable $\mathbf{8 A}$ in 97% yield. The greater stability of $\mathbf{9 B}$ is attributed to the severe steric interactions between C-7 benzyloxy and C-6 methyl groups in 9A. Since $\mathbf{8 A}$ and 8 B were not equilibrated at room temperature, debenzylation of a mixture of 9 A and 9 B afforded 8 A and 8 B in the same

[^1]

Figure 1.
Scheme I

Scheme II ${ }^{a}$

${ }^{a}$ (a) $20 \% \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C} / \mathrm{H}_{2}, \mathrm{AcOEt} ;(\mathrm{b}) \mathrm{Pb}(\mathrm{OAc})_{4}$ (2.2 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 20 \mathrm{~min}$; (c) $60 \% \mathrm{HClO}_{4} ; \mathrm{THF}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 6: 6,0^{\circ} \mathrm{C}, 5$ \min; (d) $10 \% \mathrm{Pd}-\mathrm{C} / \mathrm{H}_{2}$, AcOEt; (e) $\mathrm{TMSCl}, \mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$, $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, 18-crown-6, reflux, 2.5 h ; (g) $10 \% \mathrm{Pd}-\mathrm{C} / \mathrm{H}_{2}$, THF; (h) $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux.
ratio. These results are quite interesting from the viewpoint of the synthetic studies of mitomycins.

${ }^{\text {a }}$ (a) $\mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{CHCl}_{3}$, room temperature; (b) LiAlH_{4}, THF, room temperature, 1 h ; (c) $20 \% \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C} / \mathrm{H}_{2}, \mathrm{MeOH}, 5 \mathrm{~h}$; (d) $\mathrm{Ts} \mathrm{Cl}, \mathrm{Py}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; (e) salcomine $/ \mathrm{O}_{2}$, DMF , room temperature, 3 h.

It is expected that the regioselective methylation of phenol group at C-8 position of conformer 8 A would be
(1) Hata, T.; Sano, Y.; Sugawara, R.; Matsumae, A.; Kanamori, K.; Shima, Y.; Hoshi, T. J. Antibiot. 1956, 9, 141 and 146.
possible because the methyl group at C-6 position blocks the phenol hydroxyl group at C-7. On the other hand, no selectivity would be expected with conformer 8B. In fact, methylation of 8 A afforded $10 \mathrm{~A}, 11 \mathrm{~A}$, and 11 B in 70%, 3%, and 8% yields, respectively (Scheme III). The dimethylated minor product 11 A isomerized partially to 11 B under the reaction conditions as a consequence of the steric repulsion between C-6 methyl and C-7 methoxy groups. On the other hand, methylation of 8 B under the same conditions as described above afforded 10B, 14B, and 11B in $40 \%, 28 \%$, and 7% yields, respectively. Under these conditions, the conformation of the products remained unchanged.

Lithium aluminun hydride reduction of lactam 10 A followed by hydrogenolysis ${ }^{14}$ provided an unstable amino phenol, which was directly tosylated to give 12 in 75% overall yield. Bis(salicylidene)ethylenediiminocobalt(II) (salcomine) ${ }^{15}$ oxidation of 12 in DMF smoothly provided p-quinone 13 as yellow crystals in 94% yield.

In summary, the structure of the conformational isomers 8 A and 8 B was elucidated. An efficient synthesis of 13 , a potential intermediate for mitomycin synthesis, has been accomplished from 2 by exploiting the reactivity difference between the conformational isomers $\mathbf{8 A}$ and $\mathbf{8 B}$. Further
(2) Wakaki, S.; Marumo, K.; Tomioka, G.; Shimazu, E.; Kato, H. Kamata, H.; Kudo, S.; Fujimoto, Y. Antibiot. Chemother. 1958, 8, 228.
(3) Remers, W. A. The Chemistry of Antitumor Antibiotics, Wiley: New York, 1979; Vol. 1, pp 221-276.
(4) Recent reports in this area, see: Kametani, T.; Ohsawa, T.; Ihara, M. J. Chem. Soc., Perkin Trans. 1 1981, 290. Coates, R. M.; MacManus, P. A. J. Org. Chem. 1982, 47, 4822. Rebek, J., Jr.; Shaber, S. H.; Shue, Y.-K.; Gehret, J.-C.; Zimmerman, S. Ibid. 1984, 49, 5164. Flitsh, W.; Russkamp, P. Justus Liebigs Ann. Chem. 1985, 1398, 1413, 1422, and 1437. Danishefsky, S.; Berman, E. M.; Ciufolini, M.; Etheredge, S. J.; Segmuller, B. E. J. Am. Chem. Soc. 1985, 107, 3891. Shaw, K. J.; Luly, J. R.; Rapoport, H. J. Org. Chem. 1985, 50, 4515. Naruta, Y.; Nagai, N.; Yokota, T.; Maruyama, K. Chem. Lett. 1986, 1185. Verboom, W.; Orlemans, E. O. M.; Berga, H. J.; Scheltinga, M. W.; Reinhoudt, D. N. Tetrahedron 1986, 42, 5053. Nakatsuka, S.; Asano, O.; Goto, T. Chem. Lett. 1987, 1225. Wender, P. A.; Cooper, C.B. Tetrahedron Lett. 1987, 28, 6125. Kozikowski, A. P.; Mugrage, B. B. J. Chem. Soc., Chem. Commun. 1988, 198.
(5) Tulinsky, A. J. Am. Chem. Soc. 1962, 84, 3188.
(6) Nakatsubo, F.; Fukuyama, T.; Cocuzza, A. J.; Kishi, Y. Ibid. 1977, 99, 8115. Fukuyama, T.; Nakatsubo, F.; Cocuzza, A. J.; Kishi, Y. Tetrahedron Lett. 1977, 4295.
(7) Fukuyama, T.; Yang, L. J. Am. Chem. Soc. 1987, 109, 7881.
(8) Ohnuma, T.; Sekine, Y.; Ban, Y. Tetrahedron Lett. 1979, 2533 and 2537. Oda, K.; Ohnuma, T.; Ban, Y. J. Org. Chem. 1984, 49, 953. Ohnuma, T.; Sekine, Y.; Ban, Y. Isr. J. Chem. 1986, 27, 73.
(9) Ohnuma, T.; Tabe, M.; Shiiya, K.; Date, T.; Ban, Y. Tetrahedron Lett. 1983, 24, 4249. Ohnuma, T.; Nagasaki, M.; Tabe, M.; Ban, Y. Ibid. 1983, 24, 4253.
(10) However, the product was obtained as a single conformational isomer, the structure was not elucidated yet.
(11) Chan, T. H.; Brook, M. A.; Chaly, T. Synthesis 1983, 203.
(12) Oda, K.; Ohnuma, T.; Ban, Y.; Aoe, K. J. Am. Chem. Soc. 1984, 106, 5378.
(13) Crystal data for 8A: $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} ; \mathrm{M}_{\mathrm{r}} 383.45 ; a=11.239$ (2), $b=$ 17.932 (3), and $c=9.424$ (1) $\AA ; U=1899.4$ (5) $\AA^{3} ; P 2_{1} 2_{1} 2_{1} ; Z=4 ; D_{\mathrm{m}}=$ $1.341 \mathrm{~g} \mathrm{~cm}^{-3} ; \lambda(\mathrm{Cu} \mathrm{K} \alpha)=1.5418 \AA$. A total of 1861 unique reflections $(2 \theta<130)$ were measured, of which 1734 with $|F| \geq 2.67 \sigma(F)$ were observed. No absorption corrections applied ($\mu=17.8 \mathrm{~cm}^{-1}$, crystal size 0.2 $\times 0.4 \times 0.4 \mathrm{~mm}$). Direct method with MULTAN80, block-diagonal-matrix least-squares method on F heavy atoms anisotropic, H atoms isotropic, seven refrections omitted in last cycles, final $R=0.048,1 / \sqrt{ } w=\sigma(F)$, $w_{R}=0.059,(\Delta \rho)_{\max }=0.05$. Crystal data for $8 \mathbf{B}: \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5} ; \mathrm{M}_{\mathrm{r}}=383.45$; $a=14.804$ (2), $b=9.566$ (2), and $c=14.233$ (2) $\AA ; \beta=103.33$ (1) ${ }^{\circ} ; U=$ $1961.2(5) \AA^{3} ; P 2_{1} / n ; Z=4 ; D_{\mathrm{m}}=1.299 \mathrm{~g} \mathrm{~cm}^{-3} ; \lambda(\mathrm{Cu} \mathrm{K} \alpha)=1.5418 \AA$. A total of 3336 unique reflections $(2 \theta<130)$ were measured, of which 2848 with $|F| \geq 2.67 \sigma(F)$ were observed. No absorption corrections applied ($\mu=17.2 \mathrm{~cm}^{-1}$, crystal size $0.2 \times 0.2 \times 0.4 \mathrm{~mm}$). Direct method with MULTAN80, block-diagonal-matrix least-squares method on F heavy atoms anisotropic, H atoms isotropic, 36 refrections omitted in last cycles, final $R=0.087,1 / \sqrt{ } w=\sigma(F), w_{\mathrm{R}}=0.097,(\Delta \rho)_{\max }=0.12$.
(14) Yoshida, K.; Nakajima, S.; Wakamatsu, T.; Ban, Y.; Shibasaki, M. Heterocycles 1988, 27, 1167.
(15) Wakamatsu, T.; Nishi, T.; Ohnuma, T.; Ban, Y. Synth. Commun. 1984, 1167. Kubo, I.; Yamagiwa, M. Tetrahedron 1987, 43, 2653.
studies aimed at attaching the aziridine ring and other functionality of 1 are in progress.

Experimental Section

Melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were determined (100 or 270 MHz). CDCl_{3} was used as solvent for NMR spectra unless noted otherwise. All solvents were reagent grade unless otherwise stated. Dry solvents were dried immediately before use. Tetrahydrofuran was distilled from sodium benzophenone ketyl. Methylene chloride was distilled from potassium hydride. Thin-layer chromatography (TLC) was carried out on Merck glass plates precoated with silica gel $60 \mathrm{PF}_{254}$. Column chromatographic separations were performed on silica gel (Merck silica gel 60, 70-325 mesh ASTM).

8-Amino-1-benzyl-6,9-dimethyl-2,5-dioxo-1,2,3,4,5,6-hexa-hydro-1-benzazocine (4). A solution of $2(5.00 \mathrm{~g}, 12.1 \mathrm{mmol})$ in 170 mL of ethyl acetate was hydrogenated over $20 \% \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}$ $(500 \mathrm{mg})$ at atmospheric pressure for 24 h . The catalyst was removed by filtration through Celite. Evaporation of the solvent in vacuo gave a caramel residue, which was crystallized from ether to afford $3.74 \mathrm{~g}(96 \%)$ of colorless prisms: $\mathrm{mp} 189-190^{\circ} \mathrm{C} ; \mathrm{IR}$ (Nujol) $3430,3350,1705,1695,1625 \mathrm{~cm}^{-1} ; 100-\mathrm{MHz}$ NMR $\delta 0.80$ $(\mathrm{d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.2-2.9(\mathrm{~m}, 4 \mathrm{H}), 3.27(\mathrm{q}, 1 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 3.7-4.7(\mathrm{br} \mathrm{m}, 2 \mathrm{H}), 4.96(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J=13.4 \mathrm{~Hz})$, $6.51(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 5 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 74.51 ; \mathrm{H}, 6.88$; $\mathrm{N}, 8.69$. Found: C, $74.59 ; \mathrm{H}, 6.98$; N, 8.60.

8-(Acetylimino)-1-benzyl-6,9-dimethyl-2,5,7-trioxo-$1,2,3,4,5,6,7,8$-octahydro-1-benzazocine (5). To a suspension of $\mathrm{Pb}(\mathrm{OAc})_{4}(1.08 \mathrm{~g}, 2.2 \mathrm{mmol})$ in 5 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise a solution of $4(322 \mathrm{mg}, 1.00 \mathrm{mmol})$ in 10 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. After being stirred for 15 min at $0^{\circ} \mathrm{C}$, the reaction was quenched by the addition of 0.5 mL of ethylene glycol. The reaction mixture was successively washed with water and saturated $\mathrm{NaHCO} \mathrm{N}_{3}$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the orange residue was purified by chromatography. Elution with a $2: 1$ mixture of ethyl acetate and hexane gave 150 $\mathrm{mg}\left(40 \%\right.$) of orange crystals: $\operatorname{mp} 177-179^{\circ} \mathrm{C}$; IR (Nujol) 1710 , $1670 \mathrm{~cm}^{-1} ; 100-\mathrm{MHz}$ NMR $\delta 0.75(\mathrm{~d}, 3 \mathrm{H}, J=5.6 \mathrm{~Hz}), 2.18(\mathrm{~d}$, $3 \mathrm{H}, J=0.8 \mathrm{~Hz}$), $2.27(\mathrm{~s}, 3 \mathrm{H}), 2.4-2.8(\mathrm{~m}, 4 \mathrm{H}), 2.98(\mathrm{q}, 1 \mathrm{H}, J$ $=5.6 \mathrm{~Hz}), 4.89(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J=13.9 \mathrm{~Hz}), 6.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.33$ (s, 5 H). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 69.82 ; \mathrm{H}, 5.86 ; \mathrm{N}, 7.40$. Found: C, 69.83; H, 5.94; N, 7.15.

1-Benzyl-6,9-dimethyl-2,5,7,8-tetraoxo-1,2,3,4,5,6,7,8-octa-hydro-1-benzazocine (6). A solution of 5 ($916 \mathrm{mg}, 0.423 \mathrm{mmol}$) in 4 mL of THF and 0.2 mL of 60% perchloric acid was stirred at $0^{\circ} \mathrm{C}$ for 10 min . The reaction mixture was diluted with ethyl acetate and successively washed with water, saturated NaHCO_{3}, and brine. The extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, $136 \mathrm{mg}(95 \%)$ of pure o-quinone 6 was obtained as orange crystals: $\mathrm{mp} 165-170^{\circ} \mathrm{C}$; IR (Nujol) 1710 , $1680,1660 \mathrm{~cm}^{-1} ; 100-\mathrm{MHz}$ NMR $\delta 0.81(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}), 2.08$ $(\mathrm{d}, 3 \mathrm{H}, J=1.7 \mathrm{~Hz}), 2.4-2.8(\mathrm{~m}, 4 \mathrm{H}), 2.98(\mathrm{q}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz})$, $4.95(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J=14.4 \mathrm{~Hz}), 6.93(\mathrm{q}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 7.34(\mathrm{~s}$, 5 H). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4}: \mathrm{C}, 71.20 ; \mathrm{H}, 5.68 ; \mathrm{N}, 4.15$. Found: C, $71.36 ; \mathrm{H}, 5.63 ; \mathrm{N}, 4.00$.

1-Benzyl-7,8-dihydroxy-6,9-dimethyl-2,5-dioxo-1,2,3,4,5,6-hexahydro-1-benzazocine (7). A solution of 6 ($130 \mathrm{mg}, 0.385$ mmol) in 4 mL of ethyl acetate was hydrogenated over $10 \% \mathrm{Pd}-\mathrm{C}$ (5 mg) for 0.5 h . The catalyst was removed by filtration. The filtrate was concentrated to give a pale yellowish oil, which was crystallized from ethyl acetate to give $129 \mathrm{mg}(98 \%$) of catechol 7 as colorless prisms: mp $232-234^{\circ} \mathrm{C}$; IR (Nujol) $3450,1710,1610$ $\mathrm{cm}^{-1} ; 270-\mathrm{MHz}$ NMR $\delta 0.82(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.27(\mathrm{~d}, 3 \mathrm{H}$, $J=0.7 \mathrm{~Hz}), 2.0-2.5(\mathrm{~m}, 3 \mathrm{H}), 2.7-2.9(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{q}, 1 \mathrm{H}, J$ $=7.0 \mathrm{~Hz}), 5.00(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J=13.4 \mathrm{~Hz}), 5.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.78$ $(\mathrm{q}, 1 \mathrm{H}, J=0.7 \mathrm{~Hz}), 7.25(\mathrm{~s}, 5 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 70.78; H, 6.24; N, 4.13. Found: C, 70.80; H, 6.31; N, 4.02.

1-Benzyl-7,8-dihydroxy-6,9-dimethyl-5,5-(ethylenedi-oxy)-2-oxo-1,2,3,4,5,6-hexahydro-1-benzazocine (8A). To a solution of $7(500 \mathrm{mg}, 1.47 \mathrm{mmol})$ in 2 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~mL}$ of methanol, and ethylene glycol ($822 \mu \mathrm{~L}, 14.7 \mathrm{mmol}$) was added dropwise chlorotrimethylsilane ($746 \mu \mathrm{~L}, 5.88 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After the addition was complete, the solution was warmed to room temperature and stirred for 20 h . The solution was diluted with
ethyl acetate and successively washed with water, saturated $\mathrm{NaHCO} \mathrm{O}_{3}$, and brine before being dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by chromatography with a $1: 1$ mixture of ethyl acetate and hexane as eluent afforded 280 mg (50%) of 8 A as colorless crystals, which was recrystallized from ethanol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{mp} 151-153{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3550,3300,1640$ $\mathrm{cm}^{-1} ; 270-\mathrm{MHz}$ NMR $\delta 0.79(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}$), $1.6-2.4(\mathrm{~m}, 4$ h), $2.26(\mathrm{~d}, 3 \mathrm{H}, J=0.7 \mathrm{~Hz}$), $2.62(\mathrm{q}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $3.8-4.2$ (m, 4 H), 4.99 (AB q, $2 \mathrm{H}, J=13.7 \mathrm{~Hz}$), 5.86 (br, 1 H), 6.69 (br, $1 \mathrm{H}), 7.21(\mathrm{~s}, 5 \mathrm{H}), 7.66$ (s, 1 H). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5}$: C, 68.91 ; H, 6.57; N, 3.65. Found: C, 68.79; H, $6.53 ; \mathrm{N}, 3.59$.

1-Benzyl-7,8-bis(benzyloxy)-6,9-dimethyl-5,5-(ethylene-dioxy)-2-oxo-1,2,3,4,5,6-hexahydro-1-benzazocine (9A and 9B). To a solution of $7(7.88 \mathrm{~g}, 23.0 \mathrm{mmol})$ in 120 mL of acetone was added anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(9.50 \mathrm{~g}, 69 \mathrm{mmol})$, benzyl bromide (13.6 $\mathrm{mL}, 115 \mathrm{mmol}$), and 18 -crown- 6 (100 mg). The mixture was refluxed under argon for 2.5 h . After being cooled, the reaction mixture was concentrated in vacuo and the product was extracted with ethyl acetate. The extracts were washed with water and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent under reduced pressure, the crude product was purified by chromatography. Elution with a $1: 2$ mixture of ethyl acetate and hexane provided $11.1 \mathrm{~g}(92 \%)$ of the product as a mixture of the conformational isomers (1:1). This material was dissolved in 100 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50 \mathrm{~mL}$ of methanol, and ethylene glycol (24 mL , 0.426 mol). To this solution was added dropwise chlorotrimethylsilane ($27.0 \mathrm{~mL}, 0.213 \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$. This mixture was stirred at room temperature for 4 h and was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was successively washed with water, saturated NaHCO_{3}, and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure. The crude product was purified chormatography with $1: 2$ mixture of ethyl acetate and hexane as eluent, affording $11.1 \mathrm{~g}(93 \%)$ of 9 as a mixture of the conformational isomers ($9 \mathbf{A}: 9 \mathrm{~B}=1: 3$). Analytically pure samples of the isomers were obtained by rechromatography with the same solvent system. 9A: colorless oil; IR (CHCl_{3}) $1640 \mathrm{~cm}^{-1}$; $270-\mathrm{MHz}$ NMR $\delta 0.93(\mathrm{~d}, 3 \mathrm{H}, J=7.7 \mathrm{~Hz}$), $1.7-2.5(\mathrm{~m}, 4 \mathrm{H}), 2.09$ $(\mathrm{s}, 3 \mathrm{H}), 2.69(\mathrm{q}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.5-4.2(\mathrm{~m}, 4 \mathrm{H}), 4.93(\mathrm{AB} \mathrm{q}$, $2 \mathrm{H}, J=13.6 \mathrm{~Hz}), 4.96(\mathrm{~s}, 2 \mathrm{H}), 5.15(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J=11.7 \mathrm{~Hz})$, 6.77 ($\mathrm{s}, 1 \mathrm{H}$), $7.0-7.5(\mathrm{~m}, 15 \mathrm{H})$; high-resolution mass spectrum calcd for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{NO}_{5} 563.2672$, found 563.2683 . 9B: colorless crystals; mp 122-123 ${ }^{\circ} \mathrm{C}$ (from ether); IR (CHCl_{3}) $1640 \mathrm{~cm}^{-1}$; $270-\mathrm{MHz}$ NMR $\delta 1.01(\mathrm{~d}, 3 \mathrm{H}, J=7.7 \mathrm{~Hz}$), 1.98 (s, 3 H), 2.1-2.4 $(\mathrm{m}, 4 \mathrm{H}), 3.6-4.1(\mathrm{~m}, 5 \mathrm{H}), 4.74(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J=14.7 \mathrm{~Hz}), 5.04$ $(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J=11.4 \mathrm{~Hz}), 5.04(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J=11.0 \mathrm{~Hz}), 6.37(\mathrm{~s}$, $1 \mathrm{H}), 7.2-7.5(\mathrm{~m}, 15 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{NO}_{5}$: $\mathrm{C}, 76.71$; H, 6.62; N, 2.48. Found: C, 76.70; H, 6.59; N, 2.45.

1-Benzyl-7,8-dihydroxy-6,9-dimethyl-5,5-(ethylenedi-oxy)-2-oxo-1,2,3,4,5,6-hexahydro-1-benzazocine (8 A and 8 B). A mixture of 9 A and $9 \mathrm{~B}(1: 3)(124 \mathrm{mg}, 0.22 \mathrm{mmol})$ was dissolved in 2 mL of dry THF and hydrogenated over $10 \% \mathrm{Pd}-\mathrm{C}(57 \mathrm{mg})$ for 14 h . The catalyst was removed by filtration, and the filtrate was concentrated in vacuo to give white solid, which was purified by chromatography. Elution with a $1: 5$ mixture of ethyl acetate and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave $18 \mathrm{mg}(21 \%)$ of $8 \mathbf{A}$ and $61 \mathrm{mg}(73 \%)$ of $8 \mathbf{B}$. Recrystallization of the latter from acetone-hexane gave the analytical sample. 8 B: $\mathrm{mp} 236-238{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right) 3550,3350$, $1640 \mathrm{~cm}^{-1} ; 270-\mathrm{MHz}$ NMR $\delta 1.19(\mathrm{~d}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 1.8-2.4 $(\mathrm{m}, 4 \mathrm{H}), 2.10(\mathrm{~d}, 3 \mathrm{H}, J=0.7 \mathrm{~Hz}), 3.55(\mathrm{q}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.8-4.2$ $(\mathrm{m}, 4 \mathrm{H}), 4.85(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J=14.9 \mathrm{~Hz}), 5.77$ (br, 1 H$), 6.39(\mathrm{br}$, $1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~s}, 5 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{5}: \mathrm{C}$, 68.91; H, 6.57 ; N, 3.65 . Found: C, 68.78, H, 6.68; N, 3.73 .

Thermal Isomerization of 8B to 8A. A sample of 8B (19.4 $\mathrm{g}, 50.7 \mathrm{mmol}$) was dissolved in 700 mL of dry benzene, and the solution was heated at reflux temperature for 42 h . The less soluble isomer 8 A gradually precipitated. After being cooled, the precipitate was collected by filtration to give $18.9 \mathrm{~g}(97 \%)$ of pure 8A, which was identical with an authentic specimen.

Methylation of $8 \mathbf{A}$. To a solution of $8 \mathbf{A}(500 \mathrm{mg}, 1.31 \mathrm{mmol}$) in 15 mL of chloroform was added dimethyl sulfate ($127 \mu \mathrm{~L}, 1.34$ mmol), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(360 \mathrm{mg}, 2.62 \mathrm{mmol})$, and $18-\mathrm{crown}-6$ ($10 \mathrm{mg}, 0.038 \mathrm{mmol}$). After being stirred at room temperature for 96 h , the reaction mixture was acidified by $10 \% \mathrm{HCl}$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was successively washed with water, saturated NaHCO_{3}, and brine. The extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. Purification of the
residue by chromatography with ether-hexane ($1: 1$) as eluent gave $361 \mathrm{mg}(70 \%)$ of 10 A as colorless crystals [mp $167-169^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right) 3270,1640 \mathrm{~cm}^{-1} ; 270-\mathrm{MHz}$ NMR $\delta 0.85(\mathrm{~d}, 3 \mathrm{H}, J=7.1$ Hz), $1.8-2.4(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~d}, 3 \mathrm{H}, J=0.7 \mathrm{~Hz}$), $2.66(\mathrm{q}, 1 \mathrm{H}, J$ $=7.1 \mathrm{~Hz}), 3.6-4.4(\mathrm{~m}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.98(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J=$ $14.0 \mathrm{~Hz}), 6.64(\mathrm{q}, 1 \mathrm{H}, J=0.7 \mathrm{~Hz}), 7.22(\mathrm{~s}, 5 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{5}: \mathrm{C}, 69.50 ; \mathrm{H}, 6.85 ; \mathrm{N}, 3.52$. Found: $\mathrm{C}, 69.54 ; \mathrm{H}, 6.88 ; \mathrm{H}, 3.61]$ and and unseparable mixture of 11 A and 11B ($61 \mathrm{mg}, 11 \%$). The ratio of the isomers ($11 \mathrm{~A}: 11 \mathrm{~B}=1: 2.7$) was determined by NMR analysis. An aliquot of this mixture was separated by Lobar prepacked column [size A (240-10) LiChroprep Si $60(40-63 \mu \mathrm{~m})$] with hexane-ether (1:2) to give 11A [IR $\left(\mathrm{CHCl}_{3}\right) 1640 \mathrm{~cm}^{-1} ; 100-\mathrm{MHz}$ NMR $\delta 0.88(\mathrm{~d}, 3 \mathrm{H}, J=7.3$ Hz), $1.8-2.4(\mathrm{~m}, 4 \mathrm{H}), 2.24(\mathrm{~d}, 3 \mathrm{H}, J=0.7 \mathrm{~Hz}), 2.67(\mathrm{q}, 1 \mathrm{H}, J$ $=7.3 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.6-4.2(\mathrm{~m}, 4 \mathrm{H}), 4.91(\mathrm{AB}$ $\mathrm{q}, 2 \mathrm{H}, J=13.4 \mathrm{~Hz}), 6.75(\mathrm{q}, 1 \mathrm{H}, J=0.7 \mathrm{~Hz}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 7.19$ (s, 3 H); high-resolution mass spectrum calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{5}$ 411.2046, found 411.2075] and 11B, which was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ether to give colorless plates: $\mathrm{mp} 142-143{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right)$ $1635 \mathrm{~cm}^{-1} ; 100-\mathrm{MHz}$ NMR $\delta 1.16(\mathrm{~d}, 3 \mathrm{H}, J=7.8 \mathrm{~Hz}$), $2.0-2.4$ $(\mathrm{m}, 4 \mathrm{H}), 2.06(\mathrm{~d}, 3 \mathrm{H}, J=0.7 \mathrm{~Hz}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H})$, $3.6-4.2(\mathrm{~m}, 6 \mathrm{H}), 5.52(\mathrm{~d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 6.36(\mathrm{q}, 1 \mathrm{H}, J=0.7$ Hz), 7.32 (s, 5 H). Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{5}: \mathrm{C}, 70.05 ; \mathrm{H}, 7.01$; $\mathrm{N}, 3.40$. Found: C, 69.84; H, 7.09; N, 3.44 .

Methylation of $8 \mathbf{B}$. To a solution of catechol $8 \mathbf{B}(500 \mathrm{mg}$, 1.31 mmol) in 15 mL of chloroform was added dimethyl sulfate ($127 \mu \mathrm{~L}, 1.34 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(360 \mathrm{mg}, 2.62 \mathrm{mmol})$, and 18 -crown- 6 ($10 \mathrm{mg}, 0.038 \mathrm{mmol}$). After the mixture was stirred at room temperature for 45 h , the reaction was stopped and the product was isolated as described above for $8 \mathbf{A}$. The residue was purified by chromatography with a $1: 1$ mixture of ether and hexane as eluent, providing an unseparable mixture of $10 B$ and 14B ($352 \mathrm{mg}, 68 \%, 10 \mathrm{~B}: 14 \mathrm{~B}=7: 5$) and 11B ($36 \mathrm{mg}, 7 \%$), the last of which was identified by comparison with an authentic sample. Separation of 10 B and 14 B was performed on Lobar prepacked column [size A (240-10) LiChroprep Si $60(40-63 \mu \mathrm{~m})$] with hexane-acetone (4:1). 10B: colorless oil; IR $\left(\mathrm{CHCl}_{3}\right) 3370$, $1640 \mathrm{~cm}^{-1} ; 100-\mathrm{MHz}$ NMR $\delta 1.16(\mathrm{~d}, 3 \mathrm{H}, J=7.6 \mathrm{~Hz}$), $1.8-2.5$ $(\mathrm{m}, 4 \mathrm{H}), 2.11(\mathrm{~d}, 3 \mathrm{H}, J=0.7 \mathrm{~Hz}), 3.76(\mathrm{q}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 3.7-4.3$ $(\mathrm{m}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.77(\mathrm{AB} \mathrm{q}, 2 \mathrm{H}, J=14.7 \mathrm{~Hz}), 6.22(\mathrm{q}$, $1 \mathrm{H}, J=0.7 \mathrm{~Hz}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 5 \mathrm{H})$; high-resolution mass spectrum calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{5} 397.1889$, found 397.1894. 14B: colorless oil; IR (CHCl_{3}) $3350,1640 \mathrm{~cm}^{-1} ; 100-\mathrm{MHz}$ NMR $\delta 1.18$ $(\mathrm{d}, 3 \mathrm{H}, J=7.8 \mathrm{~Hz}), 1.8-2.3(\mathrm{~m}, 4 \mathrm{H}), 2.07(\mathrm{~d}, 3 \mathrm{H}, J=0.7 \mathrm{~Hz})$, $3.52(\mathrm{q}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 3.7-4.2(\mathrm{~m}, 5 \mathrm{H}), 5.49(\mathrm{~d}, 1 \mathrm{H}, J=14.4$ Hz) , $5.65(\mathrm{br}, 1 \mathrm{H}), 6.37(\mathrm{q}, 1 \mathrm{H}, J=0.7 \mathrm{~Hz}), 7.31(\mathrm{~s}, 5 \mathrm{H})$; high-resolution mass spectrum calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{5}$ 397.1889, found 397.1867 .

6,9-Dimethyl-5,5-(ethylenedioxy)-7-hydroxy-8-methoxy1 -(\boldsymbol{p}-tolylsulfonyl)- $1,2,3,4,5,6$-hexahydro-1-benzazocine (12). To a suspension of lithium aluminum hydride ($1.25 \mathrm{~g}, 33.0 \mathrm{mmol}$) in 20 mL of dry THF was added dropwise a solution of 10 A (3.97 $\mathrm{g}, 10.0 \mathrm{mmol}$) in 50 mL of THF at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 1 h . The excess hydride was carefully decomposed by $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 2 h to complete the reaction. The precipitate was removed by filtration and washed with ethyl acetate. The filtrate and washings were combined and concentrated in vacuo to give a colorless oil. The crude amine was dissolved in 200 mL of methanol and hydrogenated over 20% $\mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}(400 \mathrm{mg})$ at room temperature and ordinary pressure for 5 h . The catalyst was removed by filtration, and the filtrate was concentrated under reduced pressure to give 2.76 g of an air-sensitive aminophenol as a light violet oil. To a solution of the crude material in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 4 mL of pyridine was added by portions p-toluenesulfonyl chloride ($1.90 \mathrm{~g}, 10.0 \mathrm{mmol}$). The mixture was stirred at room temperature for 40 h . The reaction mixture was neutralized by adding 10% hydrochloric acid at $0^{\circ} \mathrm{C}$. The organic layer was successively washed with water, saturated NaHCO_{3} and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by chromatography with ether-hexane ($2: 1$) as eluent to give 3.37 g (75% overall yield) of 12 as colorless prisms: $\mathrm{mp} 207-208{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$ $3300,1340,1160 \mathrm{~cm}^{-1} ; 270-\mathrm{MHz}$ NMR $\delta 1.25(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$), $2.12(\mathrm{~d}, 3 \mathrm{H}, J=0.7 \mathrm{~Hz}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.6-2.5(\mathrm{~m}, 4 \mathrm{H}), 2.5-3.0$ $(\mathrm{m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.7-4.5(\mathrm{~m}, 6 \mathrm{H}), 6.33(\mathrm{q}, 1 \mathrm{H}, J=0.7 \mathrm{~Hz})$,
7.72 (s, 1 H), $7.30(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.72(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{6} \mathrm{~S}: \mathrm{C}, 61.73 ; \mathrm{H}, 6.53 ; \mathrm{N}, 3.13$. Found: C, 61.81; H, 6.46; N, 2.93.

6,9-Dimethyl-7,10-dioxo-5,5-(ethylenedioxy)-8-methoxy1 -(p-tolylsulfonyl)-1,2,3,4,5,6,7,10-octahydro-1-benzazocine (13). To a solution of $12(31 \mathrm{mg}, 0.069 \mathrm{mmol})$ in 2 mL of dry DMF was added bis(salicylidene)ethylenediiminocobalt(II) ($11 \mathrm{mg}, 0.035$ mmol). The dark suspension was stirred under an oxygen atmosphere for 3 h . The mixture was filtered through Celite to remove the catalyst, and the catalyst was washed with ethyl acetate. The filtrate and washings were combined, washed with water, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was purified by chromatography with a $1: 2$ mixture of ethyl acetate and hexane as eluent to provide 30 mg (94%) of 13 as bright yellow crystals: $\mathrm{mp} 175-177^{\circ} \mathrm{C}$; IR $\left(\mathrm{CHCl}_{3}\right)$ $1660 \mathrm{~cm}^{-1} ; 270-\mathrm{MHz}$ NMR $\delta 1.60(\mathrm{~d}, 3 \mathrm{H}, J=7.7 \mathrm{~Hz}), 1.6-1.8$ (m, 1 H), 1.87 ($\mathrm{s}, 3 \mathrm{H}$), 2.1-2.3 (m, 1 H), 2.46 (s, 3 H), 3.12 (ddd, $1 \mathrm{H}, J=10.6,4.4,1.5 \mathrm{~Hz}), 3.6-4.2(\mathrm{~m}, 8 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 7.33$ (d, $2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.64(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{7} \mathrm{~S}: \mathrm{C}, 59.86 ; \mathrm{H}, 5.90 ; \mathrm{N}, 3.03$. Found: C, $59.87 ; \mathrm{H}, 5.95$; $\mathrm{N}, 2.83$.

Acknowledgment. This work was financially supported by Grant-in-Aid for Special Project Research (No. 60119006, Representative: Professor Michio Kobayashi) from the Ministry of Education, Science and Culture, Japan, which is gratefully acknowledged. We thank Professor Osamu Yonemitsu and Dr. Takeshi Wakamatsu for helpful suggestions.

Registry No. 2, 88609-66-9; 4, 116437-99-1; 5, 116438-00-7; 6, 116438-01-8; 7, 116438-02-9; 7 dibenzyl ether, 116438-04-1; 8, 116438-03-0; 9, 116438-05-2; 10, 116438-06-3; 10 (debenzyl derivative), 116438-08-5; 10 (debenzyl deoxo derivative), 116438-09-6; 11, 116438-07-4; 12, 116438-10-9; 13, 116438-11-0; 14, 116438-12-1; mitomycin, 1404-00-8.

Supplementary Material Available: Crystal data for $8 \mathbf{A}, \mathbf{B}$, the atomic numbering system used in the X-ray analysis, and tables of fractional coordinates, isotropic temperature factors, bond lengths, and bond angles for 8A,B (6 pages). Ordering information is given on any current masthead page.

8-Ethyl-1-methoxybenzo[d]naphtho[1,2-b]pyran-6one \boldsymbol{C}-Glycosides by Acid-Catalyzed Glycosylation

Daw-Iong Kwok, Robert A. Outten, Robert Huhn, ${ }^{\dagger}$ and G. Doyle Daves, Jr.*

Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015

Received June 7, 1988
We recently reported ${ }^{1,2}$ the first synthesis of C glycosides ${ }^{3}$ structurally related to the benzo [d]naphtho-[1,2-b]pyran-6-one C-glycoside antibiotics ravidomycin, ${ }^{4}$ the gilvocarcins ${ }^{5}$ (toromycin 6), and the chrysomycins ${ }^{7}$ (virenomycin, ${ }^{8}$ the albacarcins ${ }^{9}$). The key reaction in these syntheses ${ }^{1,2}$ was a palladium-mediated coupling ${ }^{10}$ of a glycal (1,2-unsaturated carbohydrate) with a tri- n-butylstannyl derivative of the tetracyclic aglycone, which gives rise to 2 '-deoxyfuranosyl or 2 'deoxypyranosyl C-glycosides. We now report a new, complementary procedure, which was used for preparation of 8 -ethyl-1-methoxybenzo [d]-naphtho[1,2-b]pyran-6-one ribofuranosyl C-glycosides 1 and 2. This procedure involves the direct formation of the C-glycosides by Lewis acid-catalyzed condensation of

[^2]$1,2,3,5$-tetra- O-acetyl- β-D-ribofuranose ${ }^{11}(3)$ with aglycon 4. ${ }^{12}$

The aglycon 8 -ethyl-1-methoxybenzo[d]naphtho[1,2$b]$ pyran- 6 -one ${ }^{12}$ (4) was prepared by a sequence developed by Chebaane et al. ${ }^{13}$ involving acid-catalyzed condensation of 1,5 -naphthalenediol (5) with 2 -carbethoxy-4-ethylcyclohexanone ${ }^{14}$ (6) to yield 8-ethyl-1-hydroxy-7,8,9,10-tetrahydrobenzo[d]naphtho[1,2-b]pyran-6-one (7). Methylation of the phenolic hydroxyl of 7 (dimethyl sulfate, potassium carbonate) produced 8; the tetrahydro ring of this intermediate was aromatized with palladium on carbon to yield aglycon $4 .{ }^{12}$
Treatment of equimolar portions of 4 and $1,2,3,5$-tet-ra- O-acetyl- β-D-ribofuranose ${ }^{11}$ (3) in dry dichloroethane solution with stannic chloride at room temperature effected condensation with elimination of acetic acid to produce a $1: 1$ mixture of β - and α-C-glycosides 1 and 2 in 60% isolated yield. The C-glycoside anomers were separated by chromatography (silica gel) and characterized spectroscopically. Mass spectra of each isolated compound exhibited a molecular ion at $m / z 562$, establishing their isomeric nature and compositions.

The critical structural assignments of (a) the site of
(1) Outten, R. A.; Daves, G. D., Jr. J. Org. Chem. 1987, 52, 5064-5066.
(2) Outten, R. A.; Daves, G. D., Jr. J. Org. Chem., in press.
(3) (a) Hacksell, U.; Daves, G. D., Jr. Prog. Med. Chem. 1985, 22, 1-65. (b) Buchanan, J. G. Prog. Chem. Org. Nat. Prod. 1983, 44, 243-299. (c) Goodchild, J. Top Antibiot. Chem. 1982, 6, 99-227.
(4) Findlay, J. A.; Liu, J. S.; Radics, L.; Rakhit, S. Can. J. Chem. 1981, 59, 3018-3020.
(5) (a) Takahashi, K.; Yoshida, M.; Tomita, F.; Shirahata, K. J. Antibiot. 1981, 34, 271-275. (b) Hirayama, N.; Takahashi, K.; Shirahata, K.; Ohashi, Y.; Sasada, Y. Bull. Soc. Chem. Jpn. 1981, 54, 1338-1342.
(6) Horii, S.; Fukase, H.; Mizuta, E.; Hatano, K.; Mizuno, K. Chem. Pharm. Bull. 1980, 28, 3601-3611; Jain, T. C.; Simolike, G. C.; Jackman, L. M. Tetrahedron 1983, 39, 559-605.
(7) Weiss, U.; Yoshihira, K.; Highet, R. J.; White, R. J.; Wei, T. T. J. Antibiot. 1982, 35, 1194-1201.
(8) Brazhnikova, M. G.; Kudinova, M. K.; Kulyaeva, V. V.; Potapova, N. P.; Rubasheva, L. M.; Rozynov, B. N.; Horvath, G. Antibiotiki 1984, 29, 884-892.
(9) Matson, J. A.; Myllymaki, R. W.; Doyle, T. W.; Bush, J. A. U.S. Patent 4461 831, July 24, 1984; Chem. Abstr. 1985, 102, $4456 a$.
(10) (a) Daves, G. D., Jr. In Advances in Metal-Organic Chemistry; Liebeskind, L. S., Ed.; JAI: Grenwich, CT, in press. (b) Cheng, J. C.-Y.; Daves, G. D., Jr. J. Org. Chem. 1987, 52, 3083-3090. (c) Cheng, J. C.-Y.; Hacksell, U.; Daves, G. D., Jr. J. Org. Chem. 1986, 51, 3093-3098.
(11) Brown, G. B.; Davoll, J. A.; Lowy, B. A. Biochem. Prep. 1955, 4, 70.
(12) McGee, L. R.; Confalone, P. N. J. Org. Chem. 1988, 53, 3695-3701.
(13) Chebaane, K.; Guyot, M.; Mohlo, D. Bull. Soc. Chim. Fr. 1975, 2521-2526.
(14) Rhoads, S. J.; Gilbert, J. C.; Decora, A. W.; Garland, T. R.; Spangler, R. J.; Urbigkit, M. J. Tetrahedron 1963, 19, 1625-1644.

[^0]: (12) A heating mantle should not be used; overheating and runaway reactions are possible. Use a temperature-controlled oil bath. The same recommendation applies to all work with the highly strained cubane system.
 (13) If crystallization occurs, dilute immediately with chloroform.

[^1]: ${ }^{\dagger}$ Present address: Bristol-Myers Research Institute, Tokyo 153, Japan.

[^2]: ${ }^{1}$ Undergraduate Summer Research Scholar, Royal Institute of Technology, Stockholm, Sweden.

